
Libidn2 Reference Manual

Libidn2 Reference Manual ii

COLLABORATORS

TITLE :

Libidn2 Reference Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY July 19, 2021

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libidn2 Reference Manual iii

Contents

1 Libidn2 Overview 1

1.1 idn2.h . 1

2 Index 22

Libidn2 Reference Manual 1 / 22

Chapter 1

Libidn2 Overview

Libidn2 is a free software implementation of IDNA2008 and TR46.

1.1 idn2.h

idn2.h — main library interfaces

Functions

#define GCC_VERSION_AT_LEAST()
int idn2_lookup_u8 ()
int idn2_register_u8 ()
int idn2_lookup_ul ()
int idn2_register_ul ()
int idn2_to_ascii_4i ()
int idn2_to_ascii_4i2 ()
int idn2_to_ascii_4z ()
int idn2_to_ascii_8z ()
int idn2_to_ascii_lz ()
int idn2_to_unicode_8z4z ()
int idn2_to_unicode_4z4z ()
int idn2_to_unicode_44i ()
int idn2_to_unicode_8z8z ()
int idn2_to_unicode_8zlz ()
int idn2_to_unicode_lzlz ()
const char * idn2_strerror ()
const char * idn2_strerror_name ()
const char * idn2_check_version ()
void idn2_free ()

Types and Values

#define G_GNUC_IDN2_ATTRIBUTE_PURE
#define G_GNUC_IDN2_ATTRIBUTE_CONST
#define G_GNUC_DEPRECATED
#define G_GNUC_UNUSED
#define IDN2_VERSION

Libidn2 Reference Manual 2 / 22

#define IDN2_VERSION_NUMBER
#define IDN2_VERSION_MAJOR
#define IDN2_VERSION_MINOR
#define IDN2_VERSION_PATCH
#define IDN2_LABEL_MAX_LENGTH
#define IDN2_DOMAIN_MAX_LENGTH
enum idn2_flags
enum idn2_rc

Description

The main library interfaces are declared in idn2.h.

Functions

GCC_VERSION_AT_LEAST()

define GCC_VERSION_AT_LEAST(major, minor) ((__GNUC__ > (major)) || (__GNUC__ == (major) ←↩
&& __GNUC_MINOR__ >= (minor)))

Pre-processor symbol to check the gcc version.

Parameters

major gcc major version number
to compare with

minor gcc minor version number
to compare with

idn2_lookup_u8 ()

int
idn2_lookup_u8 (const uint8_t *src,

uint8_t **lookupname,
int flags);

Perform IDNA2008 lookup string conversion on domain name src , as described in section 5 of RFC 5891. Note that the input
string must be encoded in UTF-8 and be in Unicode NFC form.

Pass IDN2_NFC_INPUT in flags to convert input to NFC form before further processing. IDN2_TRANSITIONAL and
IDN2_NONTRANSITIONAL do already imply IDN2_NFC_INPUT.

Pass IDN2_ALABEL_ROUNDTRIP in flags to convert any input A-labels to U-labels and perform additional testing. This is
default since version 2.2. To switch this behavior off, pass IDN2_NO_ALABEL_ROUNDTRIP

Pass IDN2_TRANSITIONAL to enable Unicode TR46 transitional processing, and IDN2_NONTRANSITIONAL to enable
Unicode TR46 non-transitional processing.

Multiple flags may be specified by binary or:ing them together.

After version 2.0.3: IDN2_USE_STD3_ASCII_RULES disabled by default. Previously we were eliminating non-STD3 charac-
ters from domain strings such as _443._tcp.example.com, or IPs 1.2.3.4/24 provided to libidn2 functions. That was an unexpected
regression for applications switching from libidn and thus it is no longer applied by default. Use IDN2_USE_STD3_ASCII_RULES
to enable that behavior again.

After version 0.11: lookupname may be NULL to test lookup of src without allocating memory.

Libidn2 Reference Manual 3 / 22

Parameters

src
input zero-terminated
UTF-8 string in Unicode
NFC normalized form.

lookupname
newly allocated output
variable with name to
lookup in DNS.

flags optional idn2_flags to
modify behaviour.

Returns

On successful conversion IDN2_OK is returned, if the output domain or any label would have been too long IDN2_TOO_BIG_DOMAIN
or IDN2_TOO_BIG_LABEL is returned, or another error code is returned.

Since: 0.1

idn2_register_u8 ()

int
idn2_register_u8 (const uint8_t *ulabel,

const uint8_t *alabel,
uint8_t **insertname,
int flags);

Perform IDNA2008 register string conversion on domain label ulabel and alabel , as described in section 4 of RFC 5891.
Note that the input ulabel must be encoded in UTF-8 and be in Unicode NFC form.

Pass IDN2_NFC_INPUT in flags to convert input ulabel to NFC form before further processing.

It is recommended to supply both ulabel and alabel for better error checking, but supplying just one of them will work.
Passing in only alabel is better than only ulabel . See RFC 5891 section 4 for more information.

After version 0.11: insertname may be NULL to test conversion of src without allocating memory.

Parameters

ulabel
input zero-terminated
UTF-8 and Unicode NFC
string, or NULL.

alabel
input zero-terminated ACE
encoded string (xn--), or
NULL.

insertname
newly allocated output
variable with name to
register in DNS.

flags optional idn2_flags to
modify behaviour.

Returns

On successful conversion IDN2_OK is returned, when the given ulabel and alabel does not match each other IDN2_UALABEL_MISMATCH
is returned, when either of the input labels are too long IDN2_TOO_BIG_LABEL is returned, when alabel does does not appear
to be a proper A-label IDN2_INVALID_ALABEL is returned, or another error code is returned.

Libidn2 Reference Manual 4 / 22

idn2_lookup_ul ()

int
idn2_lookup_ul (const char *src,

char **lookupname,
int flags);

Perform IDNA2008 lookup string conversion on domain name src , as described in section 5 of RFC 5891. Note that the input
is assumed to be encoded in the locale’s default coding system, and will be transcoded to UTF-8 and NFC normalized by this
function.

Pass IDN2_ALABEL_ROUNDTRIP in flags to convert any input A-labels to U-labels and perform additional testing. This is
default since version 2.2. To switch this behavior off, pass IDN2_NO_ALABEL_ROUNDTRIP

Pass IDN2_TRANSITIONAL to enable Unicode TR46 transitional processing, and IDN2_NONTRANSITIONAL to enable
Unicode TR46 non-transitional processing.

Multiple flags may be specified by binary or:ing them together, for example IDN2_ALABEL_ROUNDTRIP | IDN2_NONTRANSITIONAL.

The IDN2_NFC_INPUT in flags is always enabled in this function.

After version 0.11: lookupname may be NULL to test lookup of src without allocating memory.

Parameters

src input zero-terminated locale
encoded string.

lookupname
newly allocated output
variable with name to
lookup in DNS.

flags optional idn2_flags to
modify behaviour.

Returns

On successful conversion IDN2_OK is returned, if conversion from locale to UTF-8 fails then IDN2_ICONV_FAIL is returned, if
the output domain or any label would have been too long IDN2_TOO_BIG_DOMAIN or IDN2_TOO_BIG_LABEL is returned,
or another error code is returned.

Since: 0.1

idn2_register_ul ()

int
idn2_register_ul (const char *ulabel,

const char *alabel,
char **insertname,
int flags);

Perform IDNA2008 register string conversion on domain label ulabel and alabel , as described in section 4 of RFC 5891.
Note that the input ulabel is assumed to be encoded in the locale’s default coding system, and will be transcoded to UTF-8 and
NFC normalized by this function.

It is recommended to supply both ulabel and alabel for better error checking, but supplying just one of them will work.
Passing in only alabel is better than only ulabel . See RFC 5891 section 4 for more information.

After version 0.11: insertname may be NULL to test conversion of src without allocating memory.

Parameters

Libidn2 Reference Manual 5 / 22

ulabel input zero-terminated locale
encoded string, or NULL.

alabel
input zero-terminated ACE
encoded string (xn--), or
NULL.

insertname
newly allocated output
variable with name to
register in DNS.

flags optional idn2_flags to
modify behaviour.

Returns

On successful conversion IDN2_OK is returned, when the given ulabel and alabel does not match each other IDN2_UALABEL_MISMATCH
is returned, when either of the input labels are too long IDN2_TOO_BIG_LABEL is returned, when alabel does does not appear
to be a proper A-label IDN2_INVALID_ALABEL is returned, when ulabel locale to UTF-8 conversion failed IDN2_ICONV_FAIL
is returned, or another error code is returned.

idn2_to_ascii_4i ()

int
idn2_to_ascii_4i (const uint32_t *input,

size_t inlen,
char *output,
int flags);

Warning
idn2_to_ascii_4i has been deprecated since version 2.1.1 and should not be used in newly-written code.
Use idn2_to_ascii_4i2().

THIS FUNCTION HAS BEEN DEPRECATED DUE TO A DESIGN FLAW. USE idn2_to_ascii_4i2() INSTEAD !

The ToASCII operation takes a sequence of Unicode code points that make up one domain label and transforms it into a sequence
of code points in the ASCII range (0..7F). If ToASCII succeeds, the original sequence and the resulting sequence are equivalent
labels.

It is important to note that the ToASCII operation can fail. ToASCII fails if any step of it fails. If any step of the ToASCII
operation fails on any label in a domain name, that domain name MUST NOT be used as an internationalized domain name. The
method for dealing with this failure is application-specific.

The inputs to ToASCII are a sequence of code points.

ToASCII never alters a sequence of code points that are all in the ASCII range to begin with (although it could fail). Applying
the ToASCII operation multiple effect as applying it just once.

The default behavior of this function (when flags are zero) is to apply the IDNA2008 rules without the TR46 amendments. As
the TR46 non-transitional processing is nowadays ubiquitous, when unsure, it is recommended to call this function with the
IDN2_NONTRANSITIONAL and the IDN2_NFC_INPUT flags for compatibility with other software.

Parameters

input zero terminated input
Unicode (UCS-4) string.

inlen number of elements in
input .

Libidn2 Reference Manual 6 / 22

output

output zero terminated
string that must have room
for at least 63 characters
plus the terminating zero.

flags optional idn2_flags to
modify behaviour.

Returns

Returns IDN2_OK on success, or error code.

Since: 2.0.0

idn2_to_ascii_4i2 ()

int
idn2_to_ascii_4i2 (const uint32_t *input,

size_t inlen,
char **output,
int flags);

The ToASCII operation takes a sequence of Unicode code points that make up one domain label and transforms it into a sequence
of code points in the ASCII range (0..7F). If ToASCII succeeds, the original sequence and the resulting sequence are equivalent
labels.

It is important to note that the ToASCII operation can fail. ToASCII fails if any step of it fails. If any step of the ToASCII
operation fails on any label in a domain name, that domain name MUST NOT be used as an internationalized domain name. The
method for dealing with this failure is application-specific.

The inputs to ToASCII are a sequence of code points.

ToASCII never alters a sequence of code points that are all in the ASCII range to begin with (although it could fail). Applying
the ToASCII operation multiple effect as applying it just once.

The default behavior of this function (when flags are zero) is to apply the IDNA2008 rules without the TR46 amendments. As
the TR46 non-transitional processing is nowadays ubiquitous, when unsure, it is recommended to call this function with the
IDN2_NONTRANSITIONAL and the IDN2_NFC_INPUT flags for compatibility with other software.

Parameters

input zero terminated input
Unicode (UCS-4) string.

inlen number of elements in
input .

output
pointer to newly allocated
zero-terminated output
string.

flags optional idn2_flags to
modify behaviour.

Returns

Returns IDN2_OK on success, or error code.

Since: 2.1.1

Libidn2 Reference Manual 7 / 22

idn2_to_ascii_4z ()

int
idn2_to_ascii_4z (const uint32_t *input,

char **output,
int flags);

Convert UCS-4 domain name to ASCII string using the IDNA2008 rules. The domain name may contain several labels, separated
by dots. The output buffer must be deallocated by the caller.

The default behavior of this function (when flags are zero) is to apply the IDNA2008 rules without the TR46 amendments. As
the TR46 non-transitional processing is nowadays ubiquitous, when unsure, it is recommended to call this function with the
IDN2_NONTRANSITIONAL and the IDN2_NFC_INPUT flags for compatibility with other software.

Parameters

input zero terminated input
Unicode (UCS-4) string.

output
pointer to newly allocated
zero-terminated output
string.

flags optional idn2_flags to
modify behaviour.

Returns

Returns IDN2_OK on success, or error code.

Since: 2.0.0

idn2_to_ascii_8z ()

int
idn2_to_ascii_8z (const char *input,

char **output,
int flags);

Convert UTF-8 domain name to ASCII string using the IDNA2008 rules. The domain name may contain several labels, separated
by dots. The output buffer must be deallocated by the caller.

The default behavior of this function (when flags are zero) is to apply the IDNA2008 rules without the TR46 amendments. As
the TR46 non-transitional processing is nowadays ubiquitous, when unsure, it is recommended to call this function with the
IDN2_NONTRANSITIONAL and the IDN2_NFC_INPUT flags for compatibility with other software.

Parameters

input zero terminated input
UTF-8 string.

output pointer to newly allocated
output string.

flags optional idn2_flags to
modify behaviour.

Libidn2 Reference Manual 8 / 22

Returns

Returns IDN2_OK on success, or error code.

Since: 2.0.0

idn2_to_ascii_lz ()

int
idn2_to_ascii_lz (const char *input,

char **output,
int flags);

Convert a domain name in locale’s encoding to ASCII string using the IDNA2008 rules. The domain name may contain several
labels, separated by dots. The output buffer must be deallocated by the caller.

The default behavior of this function (when flags are zero) is to apply the IDNA2008 rules without the TR46 amendments. As
the TR46 non-transitional processing is nowadays ubiquitous, when unsure, it is recommended to call this function with the
IDN2_NONTRANSITIONAL and the IDN2_NFC_INPUT flags for compatibility with other software.

Parameters

input zero terminated input
UTF-8 string.

output pointer to newly allocated
output string.

flags optional idn2_flags to
modify behaviour.

Returns

IDN2_OK on success, or error code. Same as described in idn2_lookup_ul() documentation.

Since: 2.0.0

idn2_to_unicode_8z4z ()

int
idn2_to_unicode_8z4z (const char *input,

uint32_t **output,
int flags);

Converts a possibly ACE encoded domain name in UTF-8 format into a UTF-32 string (punycode decoding). The output buffer
will be zero-terminated and must be deallocated by the caller.

output may be NULL to test lookup of input without allocating memory.

Parameters

input Input zero-terminated
UTF-8 string.

output
Newly allocated
UTF-32/UCS-4 output
string.

flags Currently unused.

Libidn2 Reference Manual 9 / 22

Returns

IDN2_OK: The conversion was successful. IDN2_TOO_BIG_DOMAIN: The domain is too long. IDN2_TOO_BIG_LABEL:
A label is would have been too long. IDN2_ENCODING_ERROR: Character conversion failed. IDN2_MALLOC: Memory
allocation failed.

Since: 2.0.0

idn2_to_unicode_4z4z ()

int
idn2_to_unicode_4z4z (const uint32_t *input,

uint32_t **output,
int flags);

Converts a possibly ACE encoded domain name in UTF-32 format into a UTF-32 string (punycode decoding). The output buffer
will be zero-terminated and must be deallocated by the caller.

output may be NULL to test lookup of input without allocating memory.

Parameters

input Input zero-terminated
UTF-32 string.

output Newly allocated UTF-32
output string.

flags Currently unused.

Returns

IDN2_OK: The conversion was successful. IDN2_TOO_BIG_DOMAIN: The domain is too long. IDN2_TOO_BIG_LABEL:
A label is would have been too long. IDN2_ENCODING_ERROR: Character conversion failed. IDN2_MALLOC: Memory
allocation failed.

Since: 2.0.0

idn2_to_unicode_44i ()

int
idn2_to_unicode_44i (const uint32_t *in,

size_t inlen,
uint32_t *out,
size_t *outlen,
int flags);

The ToUnicode operation takes a sequence of UTF-32 code points that make up one domain label and returns a sequence of
UTF-32 code points. If the input sequence is a label in ACE form, then the result is an equivalent internationalized label that is
not in ACE form, otherwise the original sequence is returned unaltered.

output may be NULL to test lookup of input without allocating memory.

Parameters

in Input array with UTF-32
code points.

Libidn2 Reference Manual 10 / 22

inlen number of code points of
input array

out output array with UTF-32
code points.

outlen

on input, maximum size of
output array with UTF-32
code points, on exit, actual
size of output array with
UTF-32 code points.

flags Currently unused.

Returns

IDN2_OK: The conversion was successful. IDN2_TOO_BIG_DOMAIN: The domain is too long. IDN2_TOO_BIG_LABEL:
A label is would have been too long. IDN2_ENCODING_ERROR: Character conversion failed. IDN2_MALLOC: Memory
allocation failed.

Since: 2.0.0

idn2_to_unicode_8z8z ()

int
idn2_to_unicode_8z8z (const char *input,

char **output,
int flags);

Converts a possibly ACE encoded domain name in UTF-8 format into a UTF-8 string (punycode decoding). The output buffer
will be zero-terminated and must be deallocated by the caller.

output may be NULL to test lookup of input without allocating memory.

Parameters

input Input zero-terminated
UTF-8 string.

output Newly allocated UTF-8
output string.

flags Currently unused.

Returns

IDN2_OK: The conversion was successful. IDN2_TOO_BIG_DOMAIN: The domain is too long. IDN2_TOO_BIG_LABEL:
A label is would have been too long. IDN2_ENCODING_ERROR: Character conversion failed. IDN2_MALLOC: Memory
allocation failed.

Since: 2.0.0

idn2_to_unicode_8zlz ()

int
idn2_to_unicode_8zlz (const char *input,

char **output,
int flags);

Converts a possibly ACE encoded domain name in UTF-8 format into a string encoded in the current locale’s character set
(punycode decoding). The output buffer will be zero-terminated and must be deallocated by the caller.

Libidn2 Reference Manual 11 / 22

output may be NULL to test lookup of input without allocating memory.

Parameters

input Input zero-terminated
UTF-8 string.

output
Newly allocated output
string in current locale’s
character set.

flags Currently unused.

Returns

IDN2_OK: The conversion was successful. IDN2_TOO_BIG_DOMAIN: The domain is too long. IDN2_TOO_BIG_LABEL:
A label is would have been too long. IDN2_ENCODING_ERROR: Character conversion failed. IDN2_MALLOC: Memory
allocation failed.

Since: 2.0.0

idn2_to_unicode_lzlz ()

int
idn2_to_unicode_lzlz (const char *input,

char **output,
int flags);

Converts a possibly ACE encoded domain name in the locale’s character set into a string encoded in the current locale’s character
set (punycode decoding). The output buffer will be zero-terminated and must be deallocated by the caller.

output may be NULL to test lookup of input without allocating memory.

Parameters

input
Input zero-terminated string
encoded in the current
locale’s character set.

output
Newly allocated output
string in current locale’s
character set.

flags Currently unused.

Returns

IDN2_OK: The conversion was successful. IDN2_TOO_BIG_DOMAIN: The domain is too long. IDN2_TOO_BIG_LABEL:
A label is would have been too long. IDN2_ENCODING_ERROR: Output character conversion failed. IDN2_ICONV_FAIL:
Input character conversion failed. IDN2_MALLOC: Memory allocation failed.

Since: 2.0.0

idn2_strerror ()

const char~*
idn2_strerror (int rc);

Convert internal libidn2 error code to a humanly readable string. The returned pointer must not be de-allocated by the caller.

Libidn2 Reference Manual 12 / 22

Parameters

rc return code from another
libidn2 function.

Returns

A humanly readable string describing error.

idn2_strerror_name ()

const char~*
idn2_strerror_name (int rc);

Convert internal libidn2 error code to a string corresponding to internal header file symbols. For example, idn2_strerror_name(IDN2_MALLOC)
will return the string "IDN2_MALLOC".

The caller must not attempt to de-allocate the returned string.

Parameters

rc return code from another
libidn2 function.

Returns

A string corresponding to error code symbol.

idn2_check_version ()

const char~*
idn2_check_version (const char *req_version);

Check IDN2 library version. This function can also be used to read out the version of the library code used. See IDN2_VERSION
for a suitable req_version string, it corresponds to the idn2.h header file version. Normally these two version numbers match,
but if you are using an application built against an older libidn2 with a newer libidn2 shared library they will be different.

Parameters

req_version version string to compare
with, or NULL.

Returns

Check that the version of the library is at minimum the one given as a string in req_version and return the actual version string
of the library; return NULL if the condition is not met. If NULL is passed to this function no check is done and only the version
string is returned.

idn2_free ()

void
idn2_free (void *ptr);

Libidn2 Reference Manual 13 / 22

Call free(3) on the given pointer.

This function is typically only useful on systems where the library malloc heap is different from the library caller malloc heap,
which happens on Windows when the library is a separate DLL.

Parameters

ptr pointer to deallocate

Types and Values

G_GNUC_IDN2_ATTRIBUTE_PURE

#~define G_GNUC_IDN2_ATTRIBUTE_PURE __attribute__ ((pure))

Function attribute: Function is a pure function.

G_GNUC_IDN2_ATTRIBUTE_CONST

define G_GNUC_IDN2_ATTRIBUTE_CONST __attribute__ ((const))

Function attribute: Function is a const function.

G_GNUC_DEPRECATED

define G_GNUC_DEPRECATED __attribute__((deprecated))

Function attribute: Function is deprecated.

G_GNUC_UNUSED

define G_GNUC_UNUSED __attribute__ ((__unused__))

Parameter attribute: Parameter is not used.

IDN2_VERSION

#define IDN2_VERSION "2.3.2"

Pre-processor symbol with a string that describe the header file version number. Used together with idn2_check_version() to
verify header file and run-time library consistency.

IDN2_VERSION_NUMBER

#define IDN2_VERSION_NUMBER 0x02030002

Pre-processor symbol with a hexadecimal value describing the header file version number. For example, when the header version
is 1.2.4711 this symbol will have the value 0x01021267. The last four digits are used to enumerate development snapshots, but
for all public releases they will be 0000.

Libidn2 Reference Manual 14 / 22

IDN2_VERSION_MAJOR

#define IDN2_VERSION_MAJOR 2

Pre-processor symbol for the major version number (decimal). The version scheme is major.minor.patchlevel.

IDN2_VERSION_MINOR

#define IDN2_VERSION_MINOR 3

Pre-processor symbol for the minor version number (decimal). The version scheme is major.minor.patchlevel.

IDN2_VERSION_PATCH

#define IDN2_VERSION_PATCH 2

Pre-processor symbol for the patch level number (decimal). The version scheme is major.minor.patchlevel.

IDN2_LABEL_MAX_LENGTH

#define IDN2_LABEL_MAX_LENGTH 63

Constant specifying the maximum length of a DNS label to 63 characters, as specified in RFC 1034.

IDN2_DOMAIN_MAX_LENGTH

#define IDN2_DOMAIN_MAX_LENGTH 255

Constant specifying the maximum size of the wire encoding of a DNS domain to 255 characters, as specified in RFC 1034.
Note that the usual printed representation of a domain name is limited to 253 characters if it does not end with a period, or 254
characters if it ends with a period.

enum idn2_flags

Flags to IDNA2008 functions, to be binary or:ed together. Specify only 0 if you want the default behaviour.

Members

IDN2_NFC_INPUT

Normalize
in-
put
string
us-
ing
nor-
mal-
iza-
tion
form
C.

Libidn2 Reference Manual 15 / 22

IDN2_ALABEL_ROUNDTRIP

Perform
op-
tional
IDNA2008
lookup
roundtrip
check
(de-
fault).

IDN2_TRANSITIONAL

Perform
Uni-
code
TR46
tran-
si-
tional
pro-
cess-
ing.

IDN2_NONTRANSITIONAL

Perform
Uni-
code
TR46
non-
transitional
pro-
cess-
ing
(de-
fault).

IDN2_ALLOW_UNASSIGNED

Libidn
com-
pat-
i-
bil-
ity
flag,
un-
used.

Libidn2 Reference Manual 16 / 22

IDN2_USE_STD3_ASCII_RULES

Use
STD3
ASCII
rules.
This
is
a
Uni-
code
TR46
only
flag,
and
will
be
ig-
nored
when
set
with-
out
ei-
ther
IDN2_TRANSITIONAL

or
IDN2_NONTRANSITIONAL

.

IDN2_NO_TR46

Disable
Uni-
code
TR46
pro-
cess-
ing.

IDN2_NO_ALABEL_ROUNDTRIP

Disable
AL-
a-
bel
lookup
roundtrip
check.

enum idn2_rc

Return codes for IDN2 functions. All return codes are negative except for the successful code IDN2_OK which are guaranteed
to be

1. Positive values are reserved for non-error return codes.

Note that the idn2_rc enumeration may be extended at a later date to include new return codes.

Members

Libidn2 Reference Manual 17 / 22

IDN2_OK
Successful
re-
turn.

IDN2_MALLOC

Memory
al-
lo-
ca-
tion
er-
ror.

IDN2_NO_CODESET

Could
not
de-
ter-
mine
lo-
cale
string
en-
cod-
ing
for-
mat.

IDN2_ICONV_FAIL

Could
not
transcode
lo-
cale
string
to
UTF-
8.

IDN2_ENCODING_ERROR

Unicode
data
en-
cod-
ing
er-
ror.

IDN2_NFC

Error
nor-
mal-
iz-
ing
string.

IDN2_PUNYCODE_BAD_INPUT

Punycode
in-
valid
in-
put.

IDN2_PUNYCODE_BIG_OUTPUT

Punycode
out-
put
buffer
too
small.

Libidn2 Reference Manual 18 / 22

IDN2_PUNYCODE_OVERFLOW

Punycode
con-
ver-
sion
would
over-
flow.

IDN2_TOO_BIG_DOMAIN

Domain
name
longer
than
255
char-
ac-
ters.

IDN2_TOO_BIG_LABEL

Domain
la-
bel
longer
than
63
char-
ac-
ters.

IDN2_INVALID_ALABEL

Input
A-
label
is
not
valid.

IDN2_UALABEL_MISMATCH

Input
A-
label
and
U-
label
does
not
match.

IDN2_INVALID_FLAGS

Invalid
com-
bi-
na-
tion
of
flags.

IDN2_NOT_NFC

String
is
not
NFC.

Libidn2 Reference Manual 19 / 22

IDN2_2HYPHEN

String
has
for-
bid-
den
two
hy-
phens.

IDN2_HYPHEN_STARTEND

String
has
for-
bid-
den
start-
ing/end-
ing
hy-
phen.

IDN2_LEADING_COMBINING

String
has
for-
bid-
den
lead-
ing
com-
bin-
ing
char-
ac-
ter.

IDN2_DISALLOWED

String
has
dis-
al-
lowed
char-
ac-
ter.

IDN2_CONTEXTJ

String
has
for-
bid-
den
context-
j
char-
ac-
ter.

Libidn2 Reference Manual 20 / 22

IDN2_CONTEXTJ_NO_RULE

String
has
context-
j
char-
ac-
ter
with
no
rull.

IDN2_CONTEXTO

String
has
for-
bid-
den
context-
o
char-
ac-
ter.

IDN2_CONTEXTO_NO_RULE

String
has
context-
o
char-
ac-
ter
with
no
rull.

IDN2_UNASSIGNED

String
has
for-
bid-
den
unas-
signed
char-
ac-
ter.

IDN2_BIDI

String
has
for-
bid-
den
bi-
directional
prop-
er-
ties.

IDN2_DOT_IN_LABEL

Label
has
for-
bid-
den
dot
(TR46).

Libidn2 Reference Manual 21 / 22

IDN2_INVALID_TRANSITIONAL

Label
has
char-
ac-
ter
for-
bid-
den
in
tran-
si-
tional
mode
(TR46).

IDN2_INVALID_NONTRANSITIONAL

Label
has
char-
ac-
ter
for-
bid-
den
in
non-
transitional
mode
(TR46).

IDN2_ALABEL_ROUNDTRIP_FAILED

ALabel
-
>
Ula-
bel
-
>
AL-
a-
bel
re-
sult
dif-
fers
from
in-
put.

Libidn2 Reference Manual 22 / 22

Chapter 2

Index

G
G_GNUC_DEPRECATED, 13
G_GNUC_IDN2_ATTRIBUTE_CONST, 13
G_GNUC_IDN2_ATTRIBUTE_PURE, 13
G_GNUC_UNUSED, 13
GCC_VERSION_AT_LEAST, 2

I
idn2_check_version, 12
IDN2_DOMAIN_MAX_LENGTH, 14
idn2_flags, 14
idn2_free, 12
IDN2_LABEL_MAX_LENGTH, 14
idn2_lookup_u8, 2
idn2_lookup_ul, 4
idn2_rc, 16
idn2_register_u8, 3
idn2_register_ul, 4
idn2_strerror, 11
idn2_strerror_name, 12
idn2_to_ascii_4i, 5
idn2_to_ascii_4i2, 6
idn2_to_ascii_4z, 7
idn2_to_ascii_8z, 7
idn2_to_ascii_lz, 8
idn2_to_unicode_44i, 9
idn2_to_unicode_4z4z, 9
idn2_to_unicode_8z4z, 8
idn2_to_unicode_8z8z, 10
idn2_to_unicode_8zlz, 10
idn2_to_unicode_lzlz, 11
IDN2_VERSION, 13
IDN2_VERSION_MAJOR, 14
IDN2_VERSION_MINOR, 14
IDN2_VERSION_NUMBER, 13
IDN2_VERSION_PATCH, 14

	Libidn2 Overview
	idn2.h

	Index

