CHAPTER 24

Parsing Command-
Line Options

From the forthcoming book entitled Linux Application Development by
Michael K. Johnson and Erik W. Troan, copyright © 1998 by Addison
Wesley Longman, Inc., to be published in April, 1998. All rights re-
served. This material is made available with the permission of the pub-
lisher. The publisher’s permission is required for reproduction, storage,
or transmittal of this material.

For more information, see http:/www.awl.com/cseng/books/lad/.

Most Linux programs allow the user to specify command-line options.
Such options perform a wide variety of functions but are fairly uniform in
their syntax. Short options consist of a - character followed by a single
alphanumeric character. Long options, common in GNU utilities, consist
of two - characters followed by a string made up of letters, numbers, and
hyphens. Either type of option may be followed by an argument. A space
separates a short option from its arguments; either a space or an = separates
a long option from an argument.

There are many ways of parsing command-line options. The most popular
method is parsing the argv array by hand. The getopt() and getopt_long()
library functions provide some assistance for option parsing. getopt()
is provided by many Unix implementations, but it supports only short
options. The getopt_long() function is available on Linux and allows auto-
mated parsing of both short and long options.

A library called popt exists specifically for option parsing. It includes a
number of advantages over the getopt () functions.

+

446 Chapter 24 Parsing Command-Line Options

* It does not make use of global variables, which allows it to be used
when multiple passes are needed to parse argv.

* It can parse an arbitrary array of argv-style elements. This allows popt
to be used for parsing command-line-style strings from any source.

* It provides a standard method of option aliasing. Programs that use
popt can easily allow users to add new command-line options, which
are defined as combinations of already-existing options. This allows
the user to define new, complex behaviors or change the default be-
haviors of existing options.

Like getopt_long(), the popt library supports short and long style options.

The popt library is highly portable and should work on any POSIX plat-
form. The latest version is always available from ftp://ftp.redhat.com/
pub/redhat/code/popt/

It may be redistributed under either the GNU General Public License or
the GNU Library General Public License, at the distributor’s discretion.

24.1 Basic popt Usage

24.1.1 The Option Table

Applications provide popt with information on their command-line op-
tions through an array of struct poptOption structures.

finclude <popt.h>

struct poptOption {
const char * TongName; /* may be NULL */

char shortName; /* may be "\0" */

int arglnfo;

void * arg; /* depends on arglnfo */

int val; /* 0 means do not return, just update flag */

24.1 Basic popt Usage 447

Table 24.1 popt Argument Types

Value Description arg Type
POPT_ARG_NONE No argument is expected int
POPT_ARG_STRING No type checking should be performed char *
POPT_ARG_INT An integer argument is expected int
POPT_ARG_LONG A long integer is expected Tong

Each member of the table defines a single option that may be passed to
the program. Long and short options are considered a single option that
may occur in two different forms. The first two members, 1ongName and
shortName, define the names of the option; the first is a long name, and the
latter is a single character.

The argInfo member tells popt what type of argument is expected after the
argument. If no option is expected, POPT_ARG_NONE should be used. The rest
of the valid values are summarized in Table 24.1.!

The next element, arg, allows popt to automatically update program vari-
ables when the option is used. If argis NULL, it is ignored and popt takes no
special action. Otherwise, it should point to a variable of the type indicated
in the right-most column of Table 24.1.

If the option takes no argument (argIinfo is POPT_ARG_NONE), the variable
pointed to by arg is set to 1 when the option is used. If the option does take
an argument, the variable that arg points to is updated to reflect the value of
the argument. Any string is acceptable for POPT_ARG_STRING arguments, but
POPT_ARG_INT and POPT_ARG_LONG arguments are converted to the appropriate
type, and an error is returned if the conversion fails.

The final option, val, is the value popt’s parsing function should return
when the option is encountered. If it is 0, the parsing function parses the
next command-line argument rather than return.

The final structure in the table should have all the pointer values set to NULL
and all the arithmetic values set to 0, marking the end of the table.

1. getopt() connoisseurs will note that argInfo is the only field of struct poptOption
that is not directly analogous to a field in the getopt_long() argument table. The
similarity between the two allows for easy transitions from getopt_long() to popt.

+

+

+

448 Chapter 24 Parsing Command-Line Options

24.1.2 Creating a Context

popt can interleave the parsing of multiple command-line sets. It allows
this by keeping all the state information for a particular set of command-
line arguments in a poptContext data structure, an opaque type that should
not be modified outside the popt library.

New popt contexts are created by poptGetContext().
finclude <popt.h>

poptContext poptGetContext(char * name, int argc, char ** argy,
struct poptOption * options, int flags);

The first parameter, name, is used only for alias handling (discussed later).
It should be the name of the application whose options are being parsed,
or should be NULL if no option aliasing is desired. The next two arguments
specify the command-line arguments to parse. These are generally passed
to poptGetContext() exactly as they were passed to the program’s main()
function. The options parameter points to the table of command-line op-
tions, which was described in the previous section. The final parameter,
flags, is not currently used but should always be specified as 0 for compat-
ibility with future versions of the popt library.

A poptContext keeps track of which options have already been parsed and
which remain, among other things. If a program wishes to restart option
processing of a set of arguments, it can reset the poptContext by passing the
context as the sole argument to poptResetContext().

When argument processing is complete, the process should free the popt-
Context as it contains dynamically allocated components. The poptFreeCon-
text() function takes a poptContext as its sole argument and frees the re-
sources the context is using.

Here are the prototypes of both poptResetContext() and poptFreeContext().
finclude <popt.h>

void poptFreeContext(poptContext con);
void poptResetContext(poptContext con);

24.1 Basic popt Usage 449

24.1.3 Parsing the Command Line

After an application has created a poptContext, it may begin parsing argu-
ments. The poptGetNextOpt() performs the actual argument parsing.

finclude <popt.h>
int poptGetNextOpt(poptContext con);

Taking the context as its sole argument, this function parses the next
command-line argument found. After finding the next argument in the
option table, the function fills in the object pointed to by the option table
entry’s arg pointer if it is not NULL. If the val entry for the option is non-0, the
function then returns that value. Otherwise, poptGetNextOpt() continues on
to the next argument.

poptGetNextOpt() returns -1 when the final argument has been parsed, and
other negative values when errors occur. This makes it a good idea to keep
the val elements in the options table greater than 0.

If all of the command-line options are handled through arg pointers,
command-line parsing is reduced to the following line of code:

rc = poptGetNextOpt(poptcon);

Many applications require more complex command-line parsing than this,
however, and use the following structure.

while ((rc = poptGetNextOpt(poptcon)) > 0) {
switch (rc) |
/* specific arguments are handled here */

}

When returned options are handled, the application needs to know the
value of any arguments that were specified after the option. There are two
ways to discover them. One is to ask popt to fill in a variable with the value
of the option through the option table’s arg elements. The other is to use
poptGetOptArg().

+

450

Chapter 24 Parsing Command-Line Options

finclude <popt.h>
char * poptGetOptArg(poptContext con);

This function returns the argument given for the final option returned by
poptGetNextOpt(), or it returns NULL if no argument was specified.

24.1.4 Leftover Arguments

Many applications take an arbitrary number of command-line arguments,
such as a list of file names. When popt encounters an argument that does
not begin with a -, it assumes it is such an argument and adds it to a list
of leftover arguments. Three functions allow applications to access such
arguments:

char * poptGetArg(poptContext con);
This function returns the next leftover argument and marks it as
processed.

char * poptPeekArg(poptContext con);
The next leftover argument is returned but not marked as processed.
This allows an application to look ahead into the argument list,
without modifying the list.

char ** poptGetArgs(poptContext con);
All the leftover arguments are returned in amanner identical to argv.
The final element in the returned array points to NULL, indicating the
end of the arguments.

24.2 Error Handling

All of the popt functions that can return errors return integers. When an
error occurs, a negative error code is returned. Table 24.2 summarizes the
error codes that occur. Here is a more detailed discussion of each error.

24.2 Error Handling 451

Table 24.2 popt Errors

Error Description

POPT_ERROR_NOARG An argument is missing for an option.
POPT_ERROR_BADOPT An option’s argument could not be parsed.
POPT_ERROR_OPTSTOODEEP Option aliasing is nested too deeply.
POPT_ERROR_BADQUOTE Quotations do not match.

POPT_ERROR_BADNUMBER An option could not be converted to a number.
POPT_ERROR_OVERFLOW A given number was too big or too small.

POPT_ERROR_NOARG
An option that requires an argument was specified on the command
line, but no argument was given. This can be returned only by
poptGetNextOpt().

POPT_ERROR_BADOPT
An option was specified in argv but is not in the option table. This
error can be returned only from poptGetNextOpt().

POPT_ERROR_OPTSTOODEEP
A set of option aliases is nested too deeply. Currently, popt follows
options only 10 levels to prevent infinite recursion. Only poptGet-
NextOpt() can return this error.

POPT_ERROR_BADQUOTE
A parsed string has a quotation mismatch (such as a single quotation
mark). poptParseArgvString(), poptReadConfigFile(), or poptReadDe-
faultConfig() can return this error.

POPT_ERROR_BADNUMBER
A conversion from a string to a number (int or long) failed due
to the string containing nonnumeric characters. This occurs when
poptGetNextOpt() is processing an argument of type POPT_ARG_INT or
POPT_ARG_LONG.

POPT_ERROR_OVERFLOW
A string-to-number conversion failed because the number was too
large or too small. Like POPT_ERROR_BADNUMBER, this error can oc-
cur only when poptGetNextOpt() is processing an argument of type
POPT_ARG_INT or POPT_ARG_LONG.

+

452

Chapter 24 Parsing Command-Line Options

POPT_ERROR_ERRNO
A system call returned with an error, and errno still contains the
error from the system call. Both poptReadConfigFile() and poptRead-
DefaultConfig() can return this error.

Two functions are available to make it easy for applications to provide
good error messages.

const char * poptStrerror(const int error);
This function takes a popt error code and returns a string describing
the error, just as with the standard strerror() function.

char * poptBadOption(poptContext con, int flags);
If an error occurred during poptGetNextOpt(), this function returns
the option that caused the error. If the flags argument is set to
POPT_BADOPTION_NOALIAS, the outermost option is returned. Other-
wise, flags should be 0, and the option that is returned may have
been specified through an alias.

These two functions make popt error handling trivial for most applications.
When an error is detected from most of the functions, an error message is
printed along with the error string from poptStrerror(). When an error
occurs during argument parsing, code similiar to the following displays a
useful error message.

fprintf(stderr, "%s: %s\n",
poptBadOption(optCon, POPT_BADOPTION_NOALIAS),
poptStrerror(rc));

24.3 Option Aliasing

One of the primary benefits of using popt over getopt() is the ability to use
option aliasing. This lets the user specify options that popt expands into
other options when they are specified. If the standard grep program made
use of popt, users could add a --text option that expanded to -i -n -E -2
to let them more easily find information in text files.

24.3 Option Aliasing 453

24.3.1 Specifying Aliases

Aliases are normally specified in two places: /etc/poptand the .popt filein
the user’s home directory (found through the HOME environment variable).
Both files have the same format, an arbitrary number of lines formatted
like this:

appname alias newoption expansion

The appname is the name of the application, which must be the same as the
name parameter passed to poptGetContext (). This allows each file to specify
aliases for multiple programs. The alias keyword specifies that an alias is
being defined; currently popt configuration files support only aliases, but
other abilities may be added in the future. The next option is the option
that should be aliased, and it may be either a short or a long option. The
rest of the line specifies the expansion for the alias. It is parsed similarly
to a shell command, which allows \, ", and ' to be used for quoting. If a
backslash is the final character on a line, the next line in the file is assumed
to be a logical continuation of the line containing the backslash, just as in
shell.

The following entry would add a --text option to the grep command, as
suggested at the beginning of this section.

grep alias --text -i -n -E -2

24.3.2 Enabling Aliases

An application must enable alias expansion for a poptContext before calling
poptGetNextArg() for the first time. There are three functions that define
aliases for a context.

int poptReadDefaultConfig(poptContext con, int flags);
This function reads aliases from /etc/popt and the .popt file in
the user’s home directory. Currently, flags should be NULL, as it is
provided only for future expansion.

+

+

454 Chapter 24 Parsing Command-Line Options

int poptReadConfigFile(poptContext con, char * fn);
The file specified by fn is opened and parsed as a popt configuration
file. This allows programs to use program-specific configuration
files.

int poptAddAlias(poptContext con, struct poptAlias alias, int flags);
Occasionally, processes want to specify aliases without having to
read them from a configuration file. This function adds a new alias
to a context. The flags argument should be 0, as it is currently
reserved for future expansion. The new alias is specified as a struct
poptAlias, which is defined as:

struct poptAlias {

char * TongName; /* may be NULL */

char shortName; /* may be '"\0' */

int argc;

char ** argv; /* must be free()able */

b
The first two elements, TongName and shortName, specify the option

that is aliased. The final two, argc and argv, define the expansion to
use when the aliases option is encountered.

24.4 Parsing Argument Strings

Although popt is usually used for parsing arguments already divided into
an argv-style array, some programs need to parse strings that are formatted
identically to command lines. To facilitate this, popt provides a function
that parses a string into an array of string, using rules similiar to normal
shell parsing.

finclude <popt.h>
int poptParseArgvString(char * s, int * argcPtr, char *** argvPtr);

The string s is parsed into an argv-style array. The integer pointed to by the
second parameter, argcPtr, contains the number of elements parsed, and
the pointer pointed to by the final parameter is set to point to the newly

24.6 Sample Application 455

created array. The array is dynamically allocated and should be free()ed
when the application is finished with it.

The argvPtr created by poptParseArgvString() is suitable to pass directly to
poptGetContext().

24.5 Handling Extra Arguments

Some applications implement the equivalent of option aliasing but need
to do so through special logic. The poptStuffArgs() function allows an
application to insert new arguments into the current poptContext.

finclude <popt.h>
int poptStuffArgs(poptContext con, char ** argv);

The passed argv must have a NULL pointer as its final element. When
poptGetNextOpt() is next called, the “stuffed” arguments are the first to
be parsed. popt returns to the normal arguments once all the stuffed
arguments have been exhausted.

24.6 Sample Application

Robin, the sample application on pages 274-281 of Chapter 15, uses popt
for its argument parsing. It provides a good example of how the popt
library is generally used.

RPM, a popular Linux package management program, makes heavy use
of popt’s features. Many of its command-line arguments are implemented
through popt aliases, which makes RPM an excellent example of how to
take advantage of the popt library. For more information on RPM, see
http://www.rpm.org

