
ARCHIVE_WRITE (3) BSD Library Functions Manual ARCHIVE_WRITE (3)

NAME

archive_write — functions for creating archives

LIBRARY

Streaming Archive Library (libarchive, -larchive)

SYNOPSIS

#include <archive.h>

DESCRIPTION

These functions provide a complete API for creating streaming archive files. The general process is to first

create the struct archive object, set any desired options, initialize the archive, append entries, then close the ar-

chive and release all resources.

Create archive object

See archive_write_new(3).

To write an archive, you must first obtain an initialized struct archive object from archive_write_new().

Enable filters and formats, configure block size and padding

See archive_write_filter(3), archive_write_format(3) and

archive_write_blocksize(3).

You can then modify this object for the desired operations with the various archive_write_set_XXX()

functions. In particular, you will need to invoke appropriate archive_write_add_XXX() and

archive_write_set_XXX() functions to enable the corresponding compression and format support.

Set options

See archive_write_set_options(3).

Open archive

See archive_write_open(3).

Once you have prepared the struct archive object, you call archive_write_open() to actually open the

archive and prepare it for writing. There are several variants of this function; the most basic expects you to

provide pointers to several functions that can provide blocks of bytes from the archive. There are conve-

nience forms that allow you to specify a filename, file descriptor, FILE ∗ object, or a block of memory from

which to write the archive data.

Produce archive

See archive_write_header(3) and archive_write_data(3).

Individual archive entries are written in a three-step process: You first initialize a struct archive_entry structure

with information about the new entry. At a minimum, you should set the pathname of the entry and provide

a struct stat with a valid st_mode field, which specifies the type of object and st_size field, which specifies

the size of the data portion of the object.

Release resources

See archive_write_free(3).

After all entries have been written, use the archive_write_free() function to release all resources.

BSD February 2, 2012 1



ARCHIVE_WRITE (3) BSD Library Functions Manual ARCHIVE_WRITE (3)

EXAMPLES

The following sketch illustrates basic usage of the library. In this example, the callback functions are simply

wrappers around the standard open(2), write(2), and close(2) system calls.

#ifdef __linux__
#define _FILE_OFFSET_BITS 64
#endif
#include <sys/stat.h>
#include <archive.h>
#include <archive_entry.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

struct mydata {
const char ∗ name;
int fd;

};

int
myopen(struct archive ∗ a, void ∗ client_data)
{
struct mydata ∗ mydata = client_data;

mydata->fd = open(mydata->name, O_WRONLY | O_CREAT, 0644);
if (mydata->fd >= 0)
return (ARCHIVE_OK);

else
return (ARCHIVE_FATAL);

}

la_ssize_t
mywrite(struct archive ∗ a, void ∗ client_data, const void ∗ buff, size_t n)
{
struct mydata ∗ mydata = client_data;

return (write(mydata->fd, buff, n));
}

int
myclose(struct archive ∗ a, void ∗ client_data)
{
struct mydata ∗ mydata = client_data;

if (mydata->fd > 0)
close(mydata->fd);

return (0);
}

void
write_archive(const char ∗ outname, const char ∗∗ filename)
{

BSD February 2, 2012 2



ARCHIVE_WRITE (3) BSD Library Functions Manual ARCHIVE_WRITE (3)

struct mydata ∗ mydata = malloc(sizeof(struct mydata));
struct archive ∗ a;
struct archive_entry ∗ entry;
struct stat st;
char buff[8192];
int len;
int fd;

a = archive_write_new();
mydata->name = outname;
/∗ Set archive format and filter according to output file extension.

∗ If it fails, set default format. Platform depended function.
∗ See supported formats in archive_write_set_format_filter_by_ext.c ∗ /
if (archive_write_set_format_filter_by_ext(a, outname) != ARCHIVE_OK) {
archive_write_add_filter_gzip(a);
archive_write_set_format_ustar(a);

}
archive_write_open(a, mydata, myopen, mywrite, myclose);
while (∗ filename) {
stat(∗ filename, &st);
entry = archive_entry_new();
archive_entry_copy_stat(entry, &st);
archive_entry_set_pathname(entry, ∗ filename);
archive_write_header(a, entry);
if ((fd = open(∗ filename, O_RDONLY)) != -1) {
len = read(fd, buff, sizeof(buff));
while (len > 0) {
archive_write_data(a, buff, len);
len = read(fd, buff, sizeof(buff));

}
close(fd);

}
archive_entry_free(entry);
filename++;

}
archive_write_free(a);

}

int main(int argc, const char ∗∗ argv)
{
const char ∗ outname;
argv++;
outname = ∗ argv++;
write_archive(outname, argv);
return 0;

}

SEE ALSO

tar(1), archive_write_set_options(3), libarchive(3), cpio(5), mtree(5), tar(5)

BSD February 2, 2012 3



ARCHIVE_WRITE (3) BSD Library Functions Manual ARCHIVE_WRITE (3)

HISTORY

The libarchive library first appeared in FreeBSD 5.3.

AUTHORS

The libarchive library was written by Tim Kientzle <kientzle@acm.org>.

BUGS

There are many peculiar bugs in historic tar implementations that may cause certain programs to reject ar-

chives written by this library. For example, several historic implementations calculated header checksums

incorrectly and will thus reject valid archives; GNU tar does not fully support pax interchange format; some

old tar implementations required specific field terminations.

The default pax interchange format eliminates most of the historic tar limitations and provides a generic

key/value attribute facility for vendor-defined extensions. One oversight in POSIX is the failure to provide a

standard attribute for large device numbers. This library uses “SCHILY.devminor” and “SCHILY.devmajor”

for device numbers that exceed the range supported by the backwards-compatible ustar header. These keys

are compatible with Joerg Schilling’s star archiver. Other implementations may not recognize these keys

and will thus be unable to correctly restore device nodes with large device numbers from archives created by

this library.

BSD February 2, 2012 4


